

Department	Course Name	Course Number	Semester
Mechanical Engineering	Fracture Mechanics	0994583	

2025 Course Catalog Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Instructors

Name	E-mail	Section	Office Hours	Lecture Time

Prerequisites

Prerequisites by topic	
Prerequisites by course	0994481
Co-requisites by course	
Prerequisite for	

Topics Covered

Week	Topics
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Evaluation

Assessment Tools	Expected Due Date	Weight
------------------	-------------------	--------

Contribution of Course to Meet the Professional Components

Relationship to Student Outcomes

SOs	1	2	3	4	5	6	7
Availability							

Relationship to Aeronautical Engineering Program Objectives (AEPOs)

AEPO1	AEPO2	AEPO3	AEPO4	AEPO5

ABET Student Outcomes (SOs)

1	An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2	An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3	An ability to communicate effectively with a range of audiences
4	An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5	An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6	An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7	An ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Updated by ABET Committee, 2025